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ABSTRACT Hard turning optimization problems are usually approached using Response Surface 

Methodology. By running designed experiments, researchers build analytical models to represent the outputs 

under interest. However, most studies focus on the expected values of the outputs, and only a few consider 

the variances of the models, even though there are several stochastic programming (SP) techniques available 

in the literature. Such variances may have a significant impact on the problem solution. This paper aims to 

optimize the AISI 52100 hardened steel turning process using SP. Decision variables are cutting speed, feed 

rate and depth of cut, outputs are cost per part and material removal rate, and average surface roughness six 

sigma capability is modeled as a stochastic constraint. The SP method is also compared to the conventional 

one, which did not include the variances into the problem. Results show that taking the variability of the 

models into account is necessary to obtain a satisfactory process capability and to analyze different scenarios. 

Finally, this study shows that competitive results can be achieved by simplifying the problem formulation. 

INDEX TERMS Capability Engineering Optimization Methods, Response Surface Methodology, 

Stochastic Processes.

I. INTRODUCTION 

Hard turning has been of interest to both industry and 

academy due its particular characteristics and several 

advantages compared to conventional turning [1]. Such 

advantages include cost reduction, productivity increase, 

cycle time reduction, quality and material properties 

improvement, lower energy consumption and pollution 

reduction, as it eliminates coolant [2]. 

There is already a great number of recently published papers 

on hardened steel turning analysis and optimization. Some 

studies focus on the effects of process parameters (such as 

cutting speed, feed rate and depth of cut) on performance 

characteristics (i.e.: tool wear, surface roughness and 

material removal rate etc.) on AISI 52100 [3]–[6]. Others 

investigate the effects of inserts characteristics [7], [8]. 

Taguchi method is usually used for effects analysis. But for 

hard turning modeling and optimization, response surface 

methodology (RSM) is one of the most common techniques 

[9]. The optimization of industrial processes often includes 

two or more outputs [10], some of which may be strongly 

correlated. In this case, RSM has been combined with other 

methods such as multi criteria decision making [11], 

principal component analysis (PCA) [12], or artificial neural 

networks (ANN) [13]–[15]. In particular, multivariate 

statistics are used when outputs are correlated [16]. This is 

an alternative to keep all the responses included in the 

problem. 

Many of the aforementioned papers include a lot of 

correlated outputs in their optimization problem. However, 

multiobjective optimization problems may be simplified by 

selecting only a few key outputs instead of including all of 

the correlated outputs. Such approach may be suitable for 

industrial purposes, since what companies usually aim is to 

minimize costs, maximize productivity as long as quality 

requirements are achieved. 

In order to use process capability, the variance of the outputs 

must be modeled along with their expected value. The 

coefficients of the response surface models are commonly 

estimated by ordinary least squares (OLS). These analytical 

models are stochastic, because their coefficients are 

normally distributed and represent a linear combination of 

the observations [11]. Nevertheless, most of the available 

studies on hard turning only use the expected values of the 

RSM model coefficients. The gap is to verify if the stochastic 
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nature of the models’ coefficients is significant to the 

problem solution. 

Within this context, this paper aims to optimize the AISI 

52100 hardened steel turning process using stochastic 

programming. The main goals are: a) to formulate an 

optimization problem which is more related to industrial 

purposes; b) to quantify the impact of the variance of the 

output models on the results. In this study, the problem is to 

minimize cost per piece and maximize material removal rate, 

submitted to a six sigma average surface roughness 

capability. In addition, results of the present work are 

compared to the results of a previous study on hard turning 

optimization. 

The paper is structured as follows: chapter II presents the 

method, which involved multiobjective optimization 

programming (MOP), stochastic programming coupled with 

MOP and process capability modeled as a stochastic 

constraint, chapter III details the experimental procedure and 

materials used, chapter IV presents the results, discussions 

are in chapter V and conclusions are in chapter VI.  

 
II. METHOD 

The analysis and optimization of the AISI 52100 hardened 

steel turning started with the definition of a central composite 

design array and the experimental runs. After measuring the 

outputs under interest, analytical models were built using 

response surface methodology (RSM) to represent the 

expected values of the outputs under interest. In this work, 

two objective functions (cost and productivity) were defined 

and joined in a global function by Weighted Sums (WS) 

method using the formulation described in section A. Then, 

a stochastic constraint which defines a minimal process 

capability is established. Section B presents the general 

aspects of the stochastic programming technique and section 

C describes a specific formulation of a stochastic constraint 

of the process capability which includes the experimental 

data and the response surface models. Finally, the problem is 

solved using the general reduced gradient (GRG) method 

described in section D. 

 
A. MULTIOBJECTIVE OPTIMIZATION 

Multiobjective Optimization Programming (MOP) can be 

defined as the formulation of problems whose objective is to 

optimize at least two results, which can be represented by 

analytical models 𝑓(x), where x = [𝑥1, … , 𝑥𝑛] is a vector 

composed by the decision variables [17]. There are many 

strategies for MOP available in literature, among which there 

is the weighted sums (WS). For instance, Eq. (1) presents the 

general formulation for WS including two objective 

functions, where 𝑓1̅(x) and 𝑓2̅(x) are the standardized 

objective functions based on its utopian and Nadir values, 

where w is the weight of function 1 and 𝑔𝑗(x) refers to the 

problem constraints. 

 

𝑀𝑖𝑛 𝐹(x) = 𝑤𝑓1̅(x) + (1 − 𝑤) 𝑓2̅(x) 

𝑠. 𝑡.: 
(1) 

𝑔𝑗(𝑥) ≤ 0 

0 ≤ 𝑤 ≤ 1 

 

Eq. (2) presents the formula of a standardized model 𝑓�̅�(x). 

In this case, each model 𝑓�̅�(x) is staggered based on its utopic 

value 𝑓𝑖
𝑈(x)  and its Nadir value 𝑓𝑖

𝑁(x). The utopic value is 

found by optimizing 𝑓�̅�(x) alone, Nadir is the worst value of 

𝑓�̅�(x) among the other individual optimizations and 𝑓𝑖(x) is 

the current value of function i. 

 

𝑓�̅�(x) =
𝑓𝑖(x) − 𝑓𝑖

𝑈(x)

𝑓𝑖
𝑁(x) − 𝑓𝑖

𝑈(x)
 (2) 

 

A payoff matrix 𝑃 of two objective functions is presented in 

Eq. (3). 

 

𝑃 = [
𝑓1

𝑈(x) 𝑓𝑖
𝑁(x)

𝑓𝑖
𝑁(x) 𝑓2

𝑈(x)
] (3) 

 
B. STOCHASTIC PROGRAMMING IN MOP 

Stochastic programming (SP) consists of a strategy to build 

objective functions and constraints whose coefficients or 

decision variables are modeled as stochastic variables. The 

purpose of SP is to transform a stochastic problem into a 

deterministic one. The transformation depends intrinsically 

on the probability distributions used to represent the 

stochastic variables. 

There are already different modeling strategies for stochastic 

programming (SP) proposed in the literature, including the 

E-model, V-model, P-model, minimax-methods [18] and 

stochastic DEA model [19]. Since in most MOP approaches 

the analytical models 𝑓𝑖(x) are usually obtained through 

Response Surface Methodology (RSM) [9], the SP method 

selected in the present study is specific for RSM. 

After executing experiments according to a Central 

Composite Design array (CCD), results can be approximated 

to a second order polynomial model, as shown in Eq. (4). 

 

𝑌 ~ 𝑓(x) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖 
2

𝑘

𝑖=1

 

(4) 

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<𝑗

+ 𝜀 = 𝑍𝑇𝛽 + 𝜀 

 

In Eq. (4), 𝑌 is the real response, 𝑍 is the vector composed 

by the terms (constant 1, linear, quadratic and interactions), 

𝛽 is a vector composed by the coefficients of each term and 

ε is the model error. 

Coefficients in 𝛽 are considered normally distributed 

𝛽~𝑁(𝛽, 𝛴), so it is reasonable to investigate if the variance 

and covariance matrix 𝛴 causes a significant impact in the 

variance of 𝑓(x). 

Eq.s (5) and (6) present the formulas for �̂� and 𝛴 

respectively, where 𝑋 is a matrix whose lines are composed 

by the values of 𝑍𝑇  in all the experimental runs. Proof of Eq. 
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(5) had already been presented in Rocha et al. [11], while Eq. 

(6) is found in Diaz-Garcia et al. [18]. 

 

�̂� = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌) (5) 

𝛴 = 𝜎2(𝑋𝑇𝑋)−1 (6) 

 

Finally, Eq. (7) presents the general formula to calculate the 

variance of the second order polynomial model as in Eq. (3) 

[16]. 

 

𝑉𝑎𝑟[𝑓(x)] = 𝑍𝑇𝛴𝑍 (7) 

 
C. PROCESS CAPABILITY AS A STOCHASTIC 
CONSTRAINT 

There are several ways to formulate an MOP problem 

including stochastic programming (SP). For instance, if a 

result has only an Upper Specification Limit (𝑈𝑆𝐿), which is 

the case for average surface roughness, its capability 

(𝐶𝑝𝑘|𝐶𝑝𝑈) can be calculated by Eq. (8) [20]. 

 

𝐶𝑝𝑘|𝐶𝑝𝑈 =
𝑈𝑆𝐿 − 𝜇

3𝜎
 (8) 

 

Based on Eq. (7), it is possible to formulate a constraint for 

a minimal process capability required in a process and add it 

to the MOP problem, as shows Eq. (9), where 𝐶𝑝0
 is the 

minimal capability required for the process. 

 

[
𝑈𝑆𝐿𝑖 − [𝑍𝑇𝛽]

3[√𝑍𝑇𝛴𝑍]
] ≤ 𝐶𝑝0 (9) 

 
D. GENERALIZED REDUCED GRADIENT ALGORITHM 

The optimum values can be obtained by finding the 

stationary point of the fitted surface. The goal is to find the 

settings of x’s that optimize the objective function subject to 

the constraints. There are already several algorithms 

available in literature to solve such nonlinear optimization 

problems, including the generalized reduced gradient (GRG) 

[11], sequential quadratic programming (SQP), genetic 

algorithms (GA), simulated annealing, particle swarm and 

ant colony. The GRG is considered one of the most efficient 

and robust methods of constrained nonlinear optimization. 

The method is called “reduced gradient” because the 

algorithm works by substituting the constraints on the 

objective function and thus reducing the number of variables. 

Therefore, the number of gradients reduces [17]. 

The GRG method starts by classifying the original variables 

into basics (Z) (dependents) and nonbasics (Y) 

(independents). Then, one can write 𝐹(x)  =  𝐹(𝑍, 𝑌) and 

ℎ(x)  =  ℎ(𝑍, 𝑌). It is necessary that 𝑑ℎ𝑗(x)  =  0 in order to 

meet the condition of optimality. So, if we define 𝐴 =
∇𝑍ℎ𝑗(x) and 𝐵 = ∇𝑌ℎ𝑗(x), then we have 𝑑𝑌 = −𝐵−1𝐴𝑑𝑍. 

Hence, the GRG is defined as: 

 

𝐺𝑅 =
𝑑

𝑑𝑍
𝐹(x) = ∇𝑍𝐹(x) − [𝐵−1𝐴]𝑇∇𝑌𝐹(x)𝑇 (10) 

The Searching direction is 𝑆x = [−𝐺𝑅𝑑𝑌]𝑇 and we can use 

x𝑘+1 = x𝑘 + 𝛼𝑆𝑘+1 to compute the interactions and to verify 

if x𝑘+1 is adequate and ℎ(x𝑘+1) = 0 at each step. The last 

step of the method is the solution of F(x) as a function of α, 

using a one-dimensional algorithm of search, as the Newton 

method for instance. 
 
III. APPLICATION: HARD TURNING PROCESS 

In this chapter, the design of experiments is described 

(section A), followed by the experimental procedure (section 

B) and, finally, the multiobjective optimization problem 

proposed in this research. 

 
A. DESIGN OF EXPERIMENTS 

Decision variables were cutting seed (𝑆), feed rate (𝑓) and 

depth of cut (𝑑). Experiments were carried out according to 

a central composite design (CCD): eight factorial points, six 

axial points and five center points, leading to a total of 19 

runs. Eq. (11) was used to calculate the axial points distance 

to the center point (𝜌) for 𝑘 number of factorial levels and 𝑛 

decision variables. The levels are shown in Table 1. 

  

𝜌 = √𝑘𝑛4
= √234

= 1.682 (11) 

 
TABLE 1 

LEVELS AND VALUES OF THE DECISION VARIABLES 

Coded 𝑆 (m/min) 𝑓 (mm/v) 𝑑 (mm) 

-1.682 186.4 0.13 0.10 

-1 200.0 0.20 0.15 

0 220.0 0.30 0.22 

1 240.0 0.40 0.30 

1.682 253.6 0.47 0.35 
SOURCE: [21] 

 
B. EXPERIMENTAL PROCEDURE 

A CNC Nardini Logic 175 lathe was used with a maximum 

rotation speed of 4000 rpm and a cutting power of 5,5 kW. 

The composition of the pieces of AISI 52100 used in the 

experiments was: 1.03% C, 0.23% Si, 0.35% Mn, 1.40% Cr, 

0.04% Mo, 0.11% Ni, 0.001% S, 0.01%. After quenched and 

tempered, the pieces’ hardness got between 49 and 52 HRC, 

up to a depth of 3 mm below surface. Wiper mixed ceramic 

inserts were used, coated with a thin layer of titanium nitride 

(TiN). The tool holder had a negative geometry with ISO 

code DCLNL 1616H12 and entering angle χr = 95°. More 

details of the materials and methods are found in [22]. Figure 

1 shows the turning process of this study. 
To measure tool life (𝑇), the wiper inserts were worn until 

their flank wear (VBC) indicator on the tool tip to reach 0.30 

mm. This was the adopted criterion for the end of tool life 

and it was measured by an optical microscope. Cutting time 

(𝐶𝑡) was calculated by Eq. (12) for each experiment, 

according to the values of f and S. The pieces had a diameter 

𝑑 = 49 mm and a length 𝑙𝑓 = 50 mm. Total cycle time (𝑇𝑡) 

was calculated by Eq. (13), 
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𝐶𝑡 =
𝑙𝑓 . 𝜋. 𝑑

1000. 𝑓. 𝑆
 (12) 

𝑇𝑡 = 𝐶𝑡 + 𝑡1 + 𝑡2 (13) 

 

where 𝑡1 = 𝑡𝑠 + 𝑡𝑎 +
𝑡𝑝−𝑡𝑖

𝑍
 is the inproductive time and 𝑡2 =

𝐶𝑡

𝑇
𝑡𝑖 is the tool changing time. After obtaining 𝑡1, 𝑡2, 𝐶𝑡, 

measuring tool life (𝑇) and using other data presented in 

Table 2, Eq. (14) can be used to calculate the total process 

cost per piece (𝐾𝑝).  

 

 

FIGURE 1. Turning process of AISI52100 

 
TABLE 2  

DATA USED TO CALCULATE TT AND KP 

Variables Symbol Value 

Secondary time ts 0.5 min 

Tool approximation and 

retreat time 
ta 0.1 min 

Set-up time tp 60 min 

Insert changing time ti 1 min 

Batch size Z 1 unit 

Machine and labor costs Sm + Sh U$ 50.00 

Tool holder price Kth U$ 125.00 

Insert price Ki U$31.25 

Average tool holder life Nth 1 edge 

Number of cutting edges 

on the insert 
Ni 4 edges 

SOURCE: [21] 

 

𝐾𝑝 = (
𝑡1

60
−

1

𝑍
) (𝑆ℎ + 𝑆𝑚) +

𝐶𝑡

60
(𝑆ℎ + 𝑆𝑚) 

(14) 
+

𝐶𝑡

𝑇
[(

𝐾𝑡ℎ

𝑁𝑡ℎ
+

𝐾𝑖

𝑁𝑖
) +

𝑡𝑖

60
(𝑆ℎ + 𝑆𝑚)] 

 

Average surface roughness (𝑅𝑎) and maximum peak to 

valley roughness (𝑅𝑡) were measured for each wiper insert in 

its end of life. These responses were collected by a portable 

roughmeter with a cutoff length set to 0.8 mm. The 

measurements were taken at three different points of the 

workpiece. Each point was measured four times and the 

mean value among them was the final output. 

Finally, material removal rate (MRR) was calculated by 

multiplying the decision variables S, f and d. Table 3 shows 

the experimental data. 

Instead of the six outputs, only three of them were initially 

considered in this study: total process cost per piece (𝐾𝑝), 

material removal rate (𝑀𝑅𝑅) and average surface roughness 

(𝑅𝑎). The response surface model in Eq. (4) was used to 

model tool life (𝑇) and average surface roughness (𝑅𝑎). 

Vectors 𝛽 were obtained using Eq. (5) and are shown in 

Table 4 along with the adjusted 𝑅2 for the models. 𝐾𝑝 and 

𝑀𝑅𝑅 were directly calculated by formulas and thus did not 

require regression models. 

 
C. PROPOSED OPTIMIZATION PROBLEM (MOP 1) 

The analytical models of 𝐾𝑝 and 𝑀𝑅𝑅 were standardized 

using Eq. (2) and agglutinated by Eq. (1). To do so, their 

utopic and Nadir values were required. Hence, each 𝑓𝑖(x) 

was individually optimized. The only restriction was related 

to the experimental space, as shows Eq. (15).  

 

𝑔(x) = √𝑆2 + 𝑓2 + 𝑑2 ≤ √𝑘𝑛4
= 1.682 (15) 

 

Table 5 presents results in a payoff matrix. The numbers in 

blue are utopic values and the red ones are Nadir values. 

 

Process capability of 𝑅𝑎 was modeled as a stochastic 

constraint using Eq. (9). In this case, the upper specification 

limit (𝑈𝑆𝐿) was established as 0.25 μm and the minimal 

capability required (𝐶𝑝0
) of 1.67. This value is usually 

defined for experiments because additional variability 

sources   appear in the real systems, so 𝐶𝑝 may be around 1 

in practice [23]. Eq. (16) shows the proposed MOP problem. 

 
𝑀𝑖𝑛 𝐹(x) = 𝑤𝐸[𝐾𝑝] + (1 − 𝑤) 𝐸[𝑀𝑅𝑅] 
𝑠. 𝑡.: 

(16) 
𝑔𝑗(x) ≤ 0 

[
0.25 − 𝐸[𝑅𝑎]

3[√𝑉𝑎𝑟[𝑅𝑎]]
] ≥ 1.67 

0 ≤ 𝑤 ≤ 1 
 
IV. RESULTS 

In order to obtain the Pareto boundary, Eq. (16) was solved 

using the generalized reduced gradient (GRG) algorithm in 

Excel® Solver, with 𝑤 varying from 0.05 to 0.95, in a 0.05 

scale. Figure 2 presents the Pareto boundary for 𝐸[𝐾𝑝] and 

𝐸[𝑀𝑅𝑅] using MOP 1. Along with the average curve, and 

considering a 95% confidence interval, two other ones were 

plotted: the best and worst scenarios. The best scenario uses 

the lower limit for 𝐾𝑝 and upper limit for 𝑀𝑅𝑅, which means 

high productivity and low cost, respectively. The worst 

scenario is the opposite: upper limit for 𝐾𝑝 and lower limit 

for 𝑀𝑅𝑅. 
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TABLE 3 

EXPERIMENTAL DATA 

Run Decision variables Process outputs 
  

𝑆 𝑓 𝑑 𝑇 𝑇𝑐  𝑇𝑡  𝐾𝑝 𝑅𝑎 𝑅𝑡 𝑀𝑅𝑅 

1 200 0.20 0.15 17.21 0.19 0.86 0.76 0.25 1.41 6.0 

2 240 0.20 0.15 11.37 0.16 0.83 0.76 0.27 1.72 7.2 

3 200 0.40 0.15 5.96 0.10 0.77 0.72 0.31 2.12 12.0 

4 240 0.40 0.15 4.48 0.08 0.76 0.72 0.30 2.15 14.4 

5 200 0.20 0.30 9.42 0.19 0.87 0.84 0.25 1.45 12.0 

6 240 0.20 0.30 7.37 0.16 0.84 0.82 0.25 1.58 14.4 

7 200 0.40 0.30 4.03 0.10 0.78 0.79 0.34 2.01 24.0 

8 240 0.40 0.30 6.10 0.08 0.75 0.68 0.29 1.99 28.8 

9 186 0.30 0.22 9.51 0.14 0.81 0.74 0.29 1.69 12.3 

10 254 0.30 0.22 6.86 0.10 0.77 0.71 0.26 1.81 16.8 

11 220 0.13 0.22 14.18 0.27 0.95 0.89 0.21 1.54 6.3 

12 220 0.47 0.22 4.12 0.07 0.75 0.72 0.31 2.54 22.8 

13 220 0.30 0.10 9.42 0.12 0.79 0.70 0.31 1.94 6.6 

14 220 0.30 0.35 4.92 0.12 0.80 0.80 0.31 1.74 23.1 

15 220 0.30 0.22 4.89 0.12 0.80 0.81 0.26 1.81 14.5 

16 220 0.30 0.22 5.00 0.12 0.80 0.80 0.26 1.71 14.5 

17 220 0.30 0.22 4.77 0.12 0.80 0.81 0.26 1.71 14.5 

18 220 0.30 0.22 5.01 0.12 0.80 0.80 0.26 1.71 14.5 

19 220 0.30 0.22 5.12 0.12 0.80 0.80 0.26 1.71 14.5 
SOURCE: CAMPOS ET AL. [21]. 

 
TABLE 4 

COEFFICIENTS OF THE RS MODELS 

Coefficients RS models 

T Ra 

β0 4.963 0.260 

β1 -0.861 -0.007 

β2 -3.055 0.028 

β 3 -1.440 0.000 

β 11 1.115 0.005 

β 22 1.456 0.000 

β 33 0.756 0.018 

β 12 1.060 -0.010 

β 13 0.918 -0.008 

β 23 1.435 0.005 

R-sq (adj) 99.74% 98.66% 

 
TABLE 5  

PAYOFF MATRIX FOR KP AND MRR 
 Kp MRR  

Kp 0.700 0.748  

MRR 14.85 29.52  
 
A. CONVENTIONAL OPTIMIZATION (MOP 2) 

The proposed method was compared to modeling the results 

of interests by only their expected values 𝐸[𝑓(x)]. Eq. (17) 

shows the proposed MOP problem and Fig. 3 presents the 

Pareto frontier for 𝐸[𝐾𝑝] and 𝑠[𝐾𝑝] for MOP 2. 

 

𝑀𝑖𝑛 𝐹(x) = 𝑤𝐸[𝐾𝑝] + (1 − 𝑤) 𝐸[𝑀𝑅𝑅] 
𝑠. 𝑡.: 

(17) 𝑔𝑗(x) ≤ 0 

𝐸[𝑅𝑎] ≤ 0.25 

0 ≤ 𝑤 ≤ 1 

 
V. DISCUSSION  

At first, results seemed better in MOP 2. Fig. 3 shows 

material removal rates (𝑀𝑅𝑅) between 14.5 and 16.5 and 

costs per parts (𝐾𝑝) from 0.74 to 0.8. Meanwhile, Fig. 2 

lower 𝑀𝑅𝑅s (from 12.5 to 14.5). As an example, let’s 

consider the solution where 𝑤 = 0.5, which means cost and 

productivity have the same importance. Results of MOP 1 

and 2 are presented in Table 6. 

Nevertheless, the variances of the models were not 

considered in MOP 2. For that reason, the capability results 

for 𝑅𝑎 were null, because the expected value for 𝑅𝑎 was 

always equal to its upper specification limit (𝑈𝑆𝐿). It 

happened due the fact that the capability constraint was 

always active. But even if the decision makers set a minimal 

capability 𝐶𝑃𝑘0
 lower than the 𝑈𝑆𝐿, they cannot be certain 

about the capability. The only way to guarantee that the 

capability is reasonable is by considering the models’ 

variances like in MOP 1, where all solutions presented 𝐶𝑃𝑘 =
1.67. 
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FIGURE 2. Pareto boundary for Kp and MRR using MOP 1 
 

 
 
FIGURE 3. Pareto Boundary for Kp and MRR using MOP 2 
 

TABLE 6 

RESULTS OF MOPS 1 AND 2 FOR 𝑤 = 0.5 

Output MOP 1 MOP 2 

E [Kp] 0,81 0,766 

E [MRR] 13,5 15,432 

E [Ra] 0,243 0,25 

CPk [Ra] 1,67 0 

 

The problem was also modeled using normal boundary 

intersection (NBI) method. However, the Pareto boundary 

was twisted and did not present equally spaced solutions. It 

happened because the stochastic constraint of 𝑅𝑎capability 

was always active, so the solutions found by the algorithm 

got twisted from each other. On the other hand, when the 

stochastic constraint was changed until it was no longer 

active, the Pareto boundary were equally spaced and no 

longer twisted. Although, when the process capability is no 

longer a concern, then using an MOP with stochastic 

programming would not be relevant in the first place. 

Finally, we compare the results of the present study to the 

results achieved in a previous research [17], as shown in Table 

7. Cutting conditions were significantly different: while in the 

previous study the cutting speed, feed rate and depth of cut 

were high, in the current study these variables were kept in 

lower values. Consequently, 𝑀𝑅𝑅 decreased significantly, 

since it is the multiplication of the three cutting conditions. 

Tool life (𝑇) was higher in the previous study, however it did 

not cause any significant impact on 𝐾𝑝. The reason is that for 

𝑇 to be increased, lower levels of cutting speed, feed rate and 

depth of cut are usually required. By doing so, cutting time 

(𝐶𝑡) and total cycle time (𝑇𝑡) increase, along with labor and 

machine costs per piece. A proof of it is that a maximum tool 

life does not necessarily mean that tool wear is maximized. In 

this case, the number of tool changes was the same in the two 

cutting conditions. 

 
TABLE 7 

RESULTS COMPARISON TO PREVIOUS WORK 

Variable Units 
Previous 

study [17] 
Current 

S m/min 250 204 

f mm/rev 0.25 0.22 

d mm 0.26 0.19 

T min 7.19 12.21 

Ct min 0.13 0.17 

Tt min 0.81 0.84 

Kp U$ 0.76 0.76 

Ra μm 0.25 0.24 

Rt μm 1.67 1.51 

MRR cm3/min 16.25 8.43 

 

Similar results were achieved for 𝑅𝑎 and 𝑅𝑡. The difference, 

however, is that process capability was estimated only in the 

current study. In addition, the previous research modeled 𝑅𝑎 

and 𝑅𝑡 as objective functions, but in industry, these outputs 

are constraints and should be modeled as such. Otherwise, 

they will compete with other conflicting objective functions, 

increasing the difficulty of problem solution unnecessarily. 

 
VI. CONCLUSIONS 

The present study optimized the AISI 52100 hardened steel 

turning process using stochastic programming. The input 

variables were cutting speed, feed rate and depth of cut, the 

objective functions were cost per part and material removal 

rate and the capability of the average surface roughness was 

modeled as a stochastic constraint.  

The proposed method (MOP 1) was applied and then 

compared to the traditional approach (MOP 2), where the 

variance is not modeled. Results showed that, differently 

from MOP 2, MOP 1 could guarantee a minimal process 

capability. Best and worst scenarios were also plotted in the 

Pareto boundary, for a 95% confidence interval. In this 

specific case, normal boundary intersection (NBI) presented 

some difficulties in providing a satisfactory Pareto boundary. 

Finally, results between this study and the addressed one 

were compared. Competitive results were achieved in the 

current paper by modeling the problem in a simpler manner 

and in a closer perspective to industrial reality. 
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Future research may consider the stochastic nature of many 

other input variables that are related to the cost per part. 

Another possibility is to optimize not only the expected 

values of the models, but also minimize their variances, and 

use multivariate statistics such as PCA in case of highly 

correlated responses. 
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